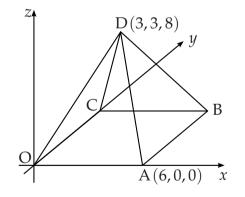

angle between vectors

[SQA] 1. A cuboid measuring 11 cm by 5 cm by 7 cm is placed centrally on top of another cuboid measuring 17 cm by 9 cm by 8 cm.

Coordinates axes are taken as shown.

- (*a*) The point A has coordinates (0,9,8) and C has coordinates (17,0,8).Write down the coordinates of B.
- (*b*) Calculate the size of angle ABC.


[SQA] 2. The diagram shows a square-based pyramid of height 8 units.

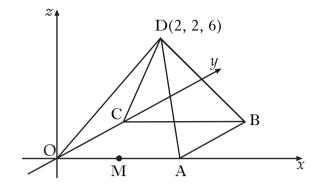
Square OABC has a side length of 6 units.

The coordinates of A and D are (6,0,0) and (3,3,8).

C lies on the *y*-axis.

- (*a*) Write down the coordinates of B.
- (b) Determine the components of \overrightarrow{DA} and \overrightarrow{DB} .
- (*c*) Calculate the size of angle ADB.

1

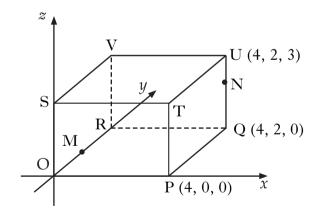

1

6

2

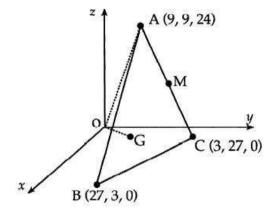
4

3. D,OABC is a square based pyramid as shown in the diagram below.

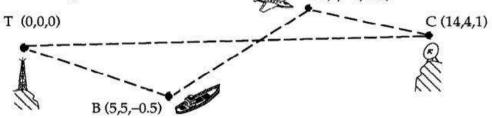


O is the origin, D is the point (2, 2, 6) and OA = 4 units.

M is the mid-point of OA.


- (a) State the coordinates of B.1(b) Express \overrightarrow{DB} and \overrightarrow{DM} in component form.3(c) Find the size of angle BDM.5
- 4. The diagram shows a cuboid OPQR,STUV relative to the coordinate axes.

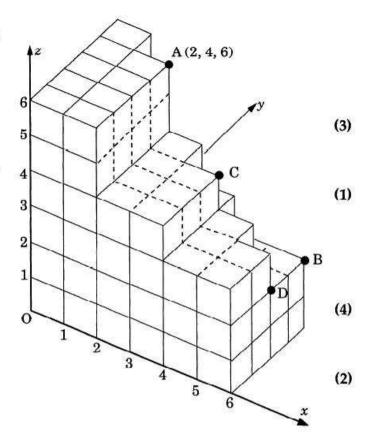
P is the point (4,0,0), Q is (4,2,0)and U is (4,2,3). M is the midpoint of OR. N is the point on UQ such that $UN = \frac{1}{3}UQ$.



(<i>a</i>) State the coordinates of M and N.	2
(b) Express the vectors \overrightarrow{VM} and \overrightarrow{VN} in component form.	2
(<i>c</i>) Calculate the size of angle MVN.	5

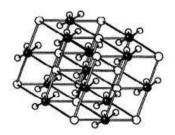
- [SQA] 5. (a) Relative to mutually perpendicular axes Ox, Oy and Oz, the vertices of triangle ABC have coordinates A(9, 9, 24), B(27, 3, 0) and C(3, 27, 0). M is the mid-point of AC.
 Find the coordinates of G which divides BM in the ratio 2:1.
 - (b) Calculate the size of angle GOA.

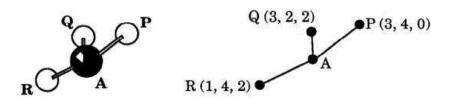
[SQA] 6. Relative to a suitable set of co-ordinate axes with a scale of 1 unit to 2 kilometres, the positions of a transmitter mast, ship, aircraft and satellite dish are shown in the diagram below.
 R (7, -4, 7.5)



The top T of the transmitter mast is the origin, the bridge B on the ship is the point (5, 5, -0.5), the centre C of the dish on the top of a mountain is the point (14, 4, 1) and the reflector R on the aircraft is the point (7, -4, 7.5).

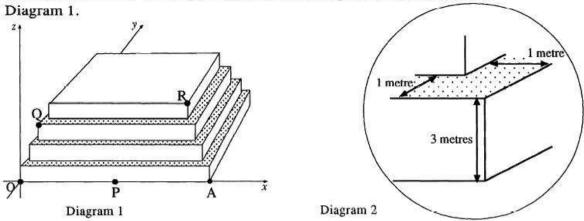
(a)	Find the distance from the bridge of the ship to the reflector on the	
	aircraft.	(3)
(b)	Three minutes earlier the aircraft was at the point M(-2, 4, 8.5). Find the	
	speed of the aircraft in kilometres per hour.	(2)
(c)	Prove that the direction of the beam TC is perpendicular to the direction	
	of the beam BR.	(3)
(d)	Calculate the size of angle TCR.	(5)


(3) (5)


- ^[SQA] ^{7.} With coordinate axes as shown, the point A is (2,4,6).
 - (a) Write down the coordinates of B,C and D.
 - (b) Show that C is the midpoint of AD.
 - (c) By using the components of the vectors OA and OB, calculate the size of angle AOB, where O is the origin.
 - (d) Hence calculate the size of angle OAB.

[SQA] 8. The diagram shows the rhombohedral crystal lattice of calcium carbonate.

The three oxygen atoms P, Q and R around the carbon atom A have coordinates as shown below.

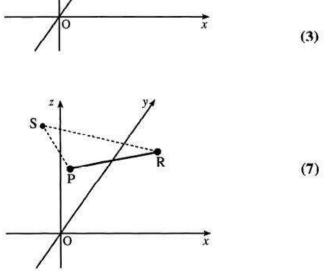


- (a) Calculate the size of angle PQR.
- (b) M is the midpoint of QR and T is the point which divides PM in the ratio 2:1.
 - (i) Find the coordinates of T.
 - (ii) Show that P, Q and R are equidistant from T.
- (c) The coordinates of A are (2, 3, 1).
 - (i) Show that P, Q and R are also equidistant from A
 - (ii) Explain why T, and not A, is the centre of the circle through P, Q and R. (2)

(4)

(6)

[SQA] 9. The first four levels of a stepped pyramid with a square base are shown in Diagram 1

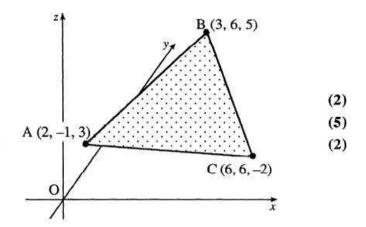


Each level is a square-based cuboid with a height of 3 m. The shaded parts indicate the steps which have a "width" of 1 m.

The height and "width" of a step at a corner are shown in the enlargement in Diagram 2.

With coordinate axes as shown and 1 unit representing 1 metre, the coordinates of P and A are (12, 0, 0) and (24, 0, 0).

- (a) Find the coordinates of Q and R.
- (b) Find the size of angle QPR.
- [SQA] 10. Relative to the axes shown and with an appropriate scale, P(-1, 3, 2) and Q(5, 0, 5) represent points on a road. The road is then extended to the point R such that $\overrightarrow{PR} = \frac{4}{3}\overrightarrow{PQ}$.
 - (a) Find the coordinates of R.
 - (b) Roads from P and R are built to meet at the point S (-2, 2, 5).
 Calculate the size of angle PSR.

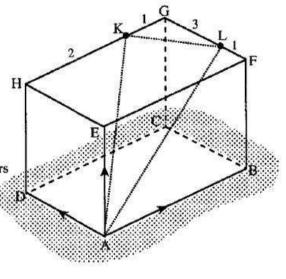


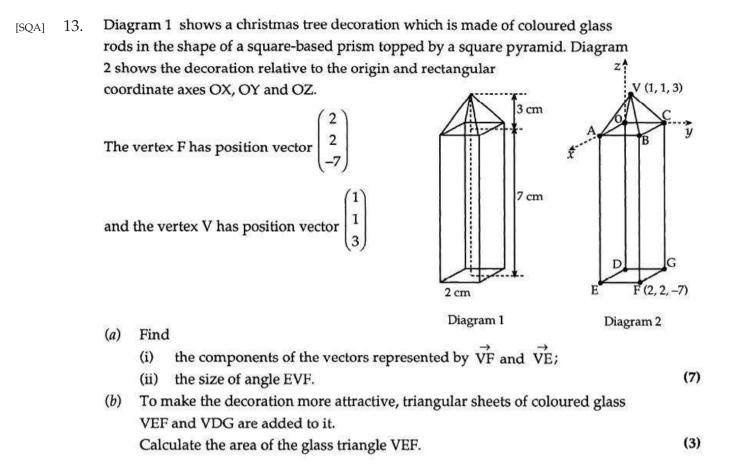
0 R

P

(2) (7)

- [SQA] 11. A triangle ABC has vertices A (2, -1, 3), B(3, 6, 5) and C (6, 6, -2).
 - (a) Find \overrightarrow{AB} and \overrightarrow{AC} .
 - (b) Calculate the size of angle BAC.
 - (c) Hence find the area of the triangle.


[SQA] 12. ABCDEFGH is a cuboid.


K lies two thirds of the way along HG. (i.e. HK:KG = 2:1). L lies one quarter of the way along FG. (i.e. FL:LG = 1:3).

 \vec{AB} , \vec{AD} and \vec{AE} can be represented by the vectors

$$\begin{pmatrix} 3 \\ 6 \\ 3 \\ 4 \\ 4 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix} \text{ respectively.}$$

- (a) Calculate the components of AK.
- (b) Calculate the components of AL.
- (c) Calculate the size of angle KAL.

[END OF QUESTIONS]